Перевод: со всех языков на английский

с английского на все языки

диапазон режимов работы

  • 1 диапазон режимов работы на неполной мощности

    Русско-английский военно-политический словарь > диапазон режимов работы на неполной мощности

  • 2 диапазон режимов работы на неполной мощности

    Универсальный русско-английский словарь > диапазон режимов работы на неполной мощности

  • 3 диапазон режимов работы на неполной мощности

    Русско-английский морской словарь > диапазон режимов работы на неполной мощности

  • 4 мощностный диапазон

    Русско-английский политехнический словарь > мощностный диапазон

  • 5 мощностной диапазон

    Универсальный русско-английский словарь > мощностной диапазон

  • 6 мощностный диапазон

    Универсальный русско-английский словарь > мощностный диапазон

  • 7 envelope

    Англо-русский словарь промышленной и научной лексики > envelope

  • 8 режим

    режим сущ
    behavior
    вертолет в режиме висения
    hovering helicopter
    взлет на режимах работы двигателей, составляющих наименьший шум
    noise abatement takeoff
    внезапно изменять режим
    chop the power
    воздушный винт на режиме малого газа
    idling propeller
    в режиме
    in mode
    в режиме большого шага
    in coarse pitch
    в режиме готовности
    in alert
    в режиме малого шага
    in fine pitch
    в режиме самоориентирования
    when castoring
    выбирать режим
    select the mode
    выбор режима работы двигателя
    selection of engine mode
    вывод из режима сваливания
    1. recovery from the stall
    2. stall recovery выводить двигатель из режима реверса
    unreverse an engine
    выводить на режим малого газа
    set idle power
    выполнять полет в режиме ожидания над аэродромом
    hold over the beacon
    выходить на взлетный режим
    come to takeoff power
    горизонтальный полет на крейсерском режиме
    level cruise
    дальность полета на режиме авторотации
    autorotation range
    двигатель на режиме малого газа
    idling engine
    диапазон взлетных режимов
    takeoff range
    диапазон рабочих режимов
    normal operating range
    диапазон режимов полета
    flight envelope
    заданный режим полета
    basic flight reference
    задатчик режима
    mode selector
    (полета) запуск в режиме авторотации
    windmill starting
    заход на посадку в режиме планирования
    gliding approach
    заход на посадку на установившемся режиме
    steady approach
    зона воздушного пространства с особым режимом полета
    airspace restricted area
    испытание в режиме висения
    hovering test
    крутящий момент воздушного винта в режиме авторотации
    propeller windmill torque
    летать в курсовом режиме
    fly heading mode
    летать в режиме бреющего полета
    fly at a low level
    максимальный режим
    full power conditions
    мощность на режиме полетного малого газа
    flight idle power
    мощность на чрезвычайном режиме
    contingency power
    набор высоты в крейсерском режиме
    cruise climb
    набор высоты до крейсерского режима
    climb to cruise operation
    на режиме малого газа
    at idle power
    нерасчетный ветровой режим
    anomalous wind conditions
    неустановившийся режим
    unsteady mode
    неустановившийся режим набора высоты
    nonsteady climb
    номинальный режим
    maximum continuous power
    обратная тяга на режиме малого газа
    reverse idle thrust
    оптимальный режим
    best economy power
    основной режим воздушного пространства
    dominant air mode
    переключатель выбора режима работы автопилота
    autopilot mode selector
    переключатель режимов работы
    mode selector switch
    переход в режим горизонтального полета
    puchover
    переходить в режим набора высоты
    entry into climb
    переход на режим висения
    reconversion hovering
    периодический режим
    periodic duty
    повторно-кратковременный режим
    intermittent duty
    повторный запуск на режиме авторотации
    windmilling restart
    полет в режиме висения
    hover flight
    полет в режиме ожидания
    holding operation
    полет в режиме ожидания на маршруте
    holding en-route operation
    полет на крейсерском режиме
    normal cruise operation
    полет на номинальном расчетном режиме
    with rated power flight
    полет на режиме авторотации
    autorotational flight
    порядок набора высоты на крейсерском режиме
    cruise climb technique
    посадка в режиме авторотации в выключенным двигателем
    power-off autorotative landing
    посадка на режиме малого газа
    idle-power
    потолок в режиме висения
    hovering ceiling
    предел скоростей на крейсерском режиме
    cruising speeds range
    продолжительность в режиме висения
    hovering endurance
    продолжительность работы двигателя на взлетном режиме
    full-thrust duration
    прямая тяга на режиме малого газа
    forward idle thrust
    работа в режиме запуска двигателя
    engine start mode
    работа двигателя на режиме малого газа
    idling engine operation
    работа на режиме холостого хода
    idle running
    работа только в режиме приема
    receiving only
    работать на режиме малого газа
    run at idle power
    работать на режиме холостого хода
    run idle
    рабочий режим
    operating mode
    радиус действия радиолокатора в режиме поиска
    radar search range
    разворот в режиме висения
    hovering turn
    расход на крейсерском режиме
    cruise consumption
    режим автоматической посадки
    autoland mode
    режим воздушного потока в заборнике воздуха
    inlet airflow schedule
    режим готовности
    standby mode
    режим закрытых тарифов
    closed-rate situation
    режим запроса
    interrogation mode
    режим земного малого газа
    ground idle
    режим малого газа
    1. idle
    2. idling 3. idle power rating режим малого газа в заданных пределах
    deadband idle
    режим малого газа при заходе на посадку
    approach idle
    режим обогрева
    heating mode
    режим ожидания
    holding mode
    режим ответа
    reply mode
    режим открытых тарифов
    open-rate situation
    режим поиска
    search mode
    режим полета
    1. flight mode
    2. mode of flight режим полетного малого газа
    flight idle
    режим работы
    rating
    режим работы автопилота по заданному курсу
    autopilot heading mode
    режим работы с полной нагрузкой
    full-load conditions
    режим равновесных оборотов
    on-speed conditions
    режим согласования
    synchronization mode
    режим стабилизации курса
    heading hold mode
    режим стабилизации на заданной высоте
    height-lock mode
    режим управления
    control mode
    режим холостого хода
    idle conditions
    сертификация по шуму на взлетном режиме
    take-off noise
    снижать режим работы двигателя
    slow down an engine
    снижение в режиме авторотации
    autorotative descent
    снижение в режиме планирования
    gliding descent
    снижение в режиме торможения
    braked descent
    снижение на крейсерском режиме
    cruise descent
    снижение на режиме авторотации
    autorotative descend operation
    снижение режима работы
    throttle retarding
    совмещенный режим
    coupled mode
    стартерный режим генератора
    generator motorizing mode
    табло режимов работы
    mode annunciator
    тепловой режим
    thermal behavior
    техника пилотирования на крейсерском режиме
    aeroplane cruising technique
    тормозной режим работы
    retardation mode
    тяга на взлетном режиме
    takeoff thrust
    тяга на максимально продолжительном режиме
    maximum continuous thrust
    тяга на режиме максимального газа
    full throttle thrust
    тяга на режиме малого газа
    idling thrust
    тяга на установившемся режиме
    steady thrust
    убрать режим
    power off
    угол начального участка установившегося режима набора высоты
    first constant climb angle
    угол установившегося режима набора высоты
    constant climb angle
    указатель режима работы
    mode indicator
    управление на переходном режиме
    control in transition
    устанавливать взлетный режим
    set takeoff power
    устанавливать режим набора высоты
    establish climb
    устанавливать режим полета
    establish the flight conditions
    устанавливать режим снижения
    establish descent
    установившийся режим
    steady mode
    установившийся режим набора высоты
    constant climb
    установка режима работы двигателя
    throttle setting
    форсажный режим
    reheat power
    форсированный режим
    augmented power
    цифровой электронный регулятор режимов работы двигателя
    digital engine control
    число оборотов двигателя на взлетном режиме
    engine takeoff speed
    чрезвычайный режим работы
    contingency rating
    шаг в режиме торможения
    braking pitch
    штурвальный режим
    manual mode
    эксплуатационный режим
    operation conditions
    элеронный режим работы
    aileron mode

    Русско-английский авиационный словарь > режим

  • 9 свинцово-кислотная аккумуляторная батарея

    1. lead acid battery

     

    свинцово-кислотная аккумуляторная батарея
    Аккумуляторная батарея, в которой электроды изготовлены главным образом из свинца, а электролит представляет собой раствор серной кислоты.
    [Инструкция по эксплуатации стационарных свинцово-кислотных аккумуляторных батарей в составе ЭПУ на объектах ВСС России. Москва 1998 г.]


    Свинцово-кислотные аккумуляторы для стационарного оборудования связи

    О. Чекстер, И. Джосан

    Источник: http://www.solarhome.ru/biblio/accu/chekster.htm

    При организации электропитания аппаратуры связи широкое применение находят аккумуляторные установки: их применяют для обеспечения бесперебойности и надлежащего качества электропитания оборудования связи, в том числе при перерывах внешнего электроснабжения, а также для обеспечения запуска и работы автоматики собственных электростанций и электроагрегатов. В подавляющем большинстве аккумуляторных установок используются стационарные свинцово-кислотные элементы и моноблоки.

    Свинцово-кислотные аккумуляторы: за и против

    Преимущественное применение свинцово-кислотных аккумуляторов объясняется целым рядом их достоинств.

    1. Во-первых, диапазон емкостей аккумуляторов находится в пределах от единиц ампер-часов до десятков килоампер-часов, что позволяет обеспечивать комплектацию батарей любого необходимого резерва.
    2. Во-вторых, соотношение между конечными зарядным и разрядным напряжениями при зарядах и разрядах свинцово-кислотных аккумуляторов имеет наименьшее значение из всех электрохимических систем источников тока, что позволяет обеспечивать низкий перепад напряжения на нагрузке во всех режимах работы электропитающей установки.
    3. В-третьих, свинцово-кислотные аккумуляторы отличаются низкой величиной саморазряда и возможностью сохранения заряда (емкости) при длительном подзаряде.
    4. В-четвертых, свинцово-кислотные аккумуляторы обладают сравнительно низким внутренним сопротивлением, что обуславливает достаточную стабильность напряжения питания при динамических изменениях сопротивления нагрузки.

    Вместе с тем свинцово-кислотным аккумуляторам присущи недостатки, ограничивающие сферу их применения и усложняющие организацию их эксплуатации.

    Из-за низкой удельной плотности запасаемой энергии свинцово-кислотные аккумуляторы имеют достаточно большие массогабаритные параметры. Однако для стационарного применения этот показатель не имеет главенствующего значения в отличие от применения аккумуляторов для питания мобильных устройств.

    Поскольку в установках свинцово-кислотных аккумуляторов происходит газообразование, для обеспечения взрывобезопасности должна быть налажена естественная или принудительная вентиляция - в зависимости от условий применения и типа аккумуляторов. По этой же причине аккумуляторные установки нельзя размещать в герметичных шкафах, отсеках и т.д.

    Разряженные свинцово-кислотные аккумуляторы требуют немедленного заряда. В противном случае переход мелкокристаллического сульфата свинца на поверхности электродов в крупнокристаллическую фазу может привести к безвозвратной потере емкости аккумуляторов. В связи с этим при длительном хранении такие аккумуляторы (кроме сухозаряженных) необходимо периодически дозаряжать.

    Типы аккумуляторов

    По исполнению

    Согласно классификации МЭК (стандарт МЭК 50 (486)-1991) свинцово-кислотные аккумуляторы выпускаются в открытом и закрытом исполнении.

    Открытые аккумуляторы - это аккумуляторы, имеющие крышку с отверстием, через которое могут удаляться газообразные продукты, заливаться электролит, производиться замер плотности электролита. Отверстия могут быть снабжены системой вентиляции.

    Закрытые аккумуляторы - это аккумуляторы, закрытые в обычных условиях работы, но снабженные устройствами, позволяющими выделяться газу, когда внутреннее давление превышает установленное значение. Дополнительная доливка воды в такие аккумуляторы невозможна. Эти аккумуляторы остаются закрытыми, имеют низкое газообразование при соблюдении условий эксплуатации, указанных изготовителем, и предназначены для работы в исходном герметизированном состоянии на протяжении всего срока службы. Их еще называют аккумуляторами с регулируемым клапаном, герметизированными или безуходными.

    В свинцово-кислотных аккумуляторах во всех режимах их работы, в том числе и при разомкнутой цепи нагрузки (холостой ход), происходит сульфатация поверхности электродов и газообразование с расходом на эти реакции воды, входящей в состав электролита. Это вынуждает при эксплуатации обычных открытых аккумуляторов производить периодический контроль уровня и плотности электролита, доливку дистиллированной воды с проведением уравнительных зарядов, что является довольно трудоемким процессом.

    В герметизированных аккумуляторах за счет применения материалов с пониженным содержанием примесей, иммобилизации электролита и других конструктивных особенностей интенсивность сульфатации и газообразования существенно снижена, что позволяет размещать такие аккумуляторы вместе с питаемым оборудованием.

    По конструкции электродов

    Область применения и особенности эксплуатации свинцово-кислотных аккумуляторов определяются их конструкцией. По типу конструкции положительных электродов (пластин) различают следующие типы аккумуляторов:

    • с электродами большой поверхности (по классификации немецкого стандарта DIN VDE 510 - GroE);
    • с панцирными (трубчатыми) положительными электродами (по классификации DIN - OPzS и OPzV);
    • с намазными и стержневыми положительными электродами (по классификации DIN - Ogi).

    Герметизированные аккумуляторы, как правило, имеют намазные положительные и отрицательные электроды (за исключением аккумуляторов OPzV).

    Критерии выбора

    При выборе типа стационарного свинцово-кислотного аккумулятора, наиболее пригодного для конкретной области применения, необходимо руководствоваться следующими критериями:

    • режим разряда и отдаваемая при этом емкость;
    • особенности размещения;
    • особенности эксплуатации;
    • срок службы;
    • стоимость.

    Режим разряда

    При выборе аккумуляторов для определенного режима разряда следует учитывать, что при коротких режимах разряда коэффициент отдачи аккумуляторов по емкости меньше единицы. При одинаковой емкости отдача элементов с электродами большой поверхности выше в два раза, чем для элементов с панцирными электродами, и в полтора раза - чем для элементов с намазными электродами.

    Стоимость

    Стоимость аккумулятора зависит от его типа: как правило, аккумуляторы с электродами большой поверхности дороже панцирных, а намазные - дешевле и тех и других. Герметизированные аккумуляторы стоят больше, чем открытые.

    Срок службы

    Самыми долговечными при соблюдении правил эксплуатации являются аккумуляторы с электродами большой поверхности, для которых срок службы составляет 20 и более лет. Второе место по сроку службы занимают аккумуляторы с панцирными электродами - примерно 16-18 лет. Срок службы аккумуляторов с намазными электродами достигает 10-12 лет. Примерно такие же сроки эксплуатации имеют герметизированные аккумуляторы.

    Однако ряд производителей выпускает герметизированные аккумуляторы и с меньшим сроком службы, но более дешевые. По классификации европейского объединения производителей аккумуляторов EUROBAT эти герметизированные аккумуляторы подразделяются на 4 класса по характеристикам и сроку службы:

    • более 12 лет;
    • 10-12 лет;
    • 6-9 лет;
    • 3-5 лет.

    Аккумуляторы с короткими сроками службы, как правило, дешевле остальных и предназначены в основном для использования в качестве резервных источников тока в установках бесперебойного питания переменным током (UPS) и на временных объектах связи.

    Следует учитывать, что указанные выше значения срока службы соответствуют средней температуре эксплуатации 20 °С. При увеличении температуры эксплуатации на каждые 10 °С за счет увеличения скорости электрохимических процессов в аккумуляторах их срок службы будет сокращаться в 2 раза.

    Размещение

    По величине занимаемой площади при эксплуатации преимущество имеют герметизированные аккумуляторы. За ними в порядке возрастания занимаемой площади следуют аккумуляторы открытых типов с намазными электродами, панцирными электродами и с электродами большой поверхности.

    Размещать герметизированные аккумуляторы при эксплуатации, как правило, допускается и в вертикальном, и в горизонтальном положении - это позволяет более экономно использовать площадь под размещение электрооборудования. При горизонтальном размещении герметизированных аккумуляторов, если нет других предписаний производителя, аккумуляторы устанавливаются таким образом, чтобы пакеты электродных пластин занимали вертикальное положение.

    Эксплуатация

    Минимальных трудовых затрат при эксплуатации требуют герметизированные аккумуляторы. Остальные типы аккумуляторов требуют больших трудозатрат обслуживающего персонала, особенно те устройства, у которых величина примеси сурьмы в положительных решетках превышает 3%.

    Качество сборки, а также укупорка соединения крышки с транспортировочной пробкой (для аккумуляторов открытых типов) или предохранительным клапаном (для герметизированных аккумуляторов) должны обеспечивать герметизацию аккумуляторов при избыточном или пониженном на 20 кПа (150 мм рт. ст.) атмосферном давлении и исключать попадание внутрь атмосферного кислорода и влаги, способных ускорять сульфатацию электродов и коррозию токосборов и борнов у сухозаряженных аккумуляторов при хранении, а также исключать выход изнутри кислоты и аэрозолей при их эксплуатации. Для герметизированных аккумуляторов, кроме того, качество укупорки должно обеспечивать нормальные условия рекомбинации кислорода и ограничивать выход газа при заданных изготовителем эксплуатационных режимах работы.

    Электрические характеристики

    Емкость

    Основным параметром, характеризующим качество аккумулятора при заданных массогабаритных показателях, является его электрическая емкость, определяемая по числу ампер-часов электричества, получаемого при разряде аккумулятора определенным током до заданного конечного напряжения.

    По классификации ГОСТ Р МЭК 896-1-95, номинальная емкость стационарного аккумулятора10) определяется по времени его разряда током десятичасового режима разряда до конечного напряжения 1,8 В/эл. при средней температуре электролита при разряде 20 °С. Если средняя температура электролита при разряде отличается от 20 °С, полученное значение фактической емкости (Сф) приводят к температуре 20 °С, используя формулу:

    С = Сф / [1 + z(t - 20)]

    где z - температурный коэффициент емкости, равный 0,006 °С-1 (для режимов разряда более часа) и 0,01 °С-1 (для режимов разряда, равных одному часу и менее); t - фактическое значение средней температуры электролита при разряде, °С.

    Емкость аккумуляторов при более коротких режимах разряда меньше номинальной и при температуре электролита (20 ± 5) °С для аккумуляторов с разными типами электродов должна быть не менее указанных в таблице значений (с учетом обеспечения приемлемых пределов изменения напряжения на аппаратуре связи).

    Как правило, при вводе в эксплуатацию аккумуляторов с малым сроком хранения на первом цикле разряда батарея должна отдавать не менее 95% емкости, указанной в таблице для 10-, 5-, 3- и 1-часового режимов разряда, а на 5-10-м цикле разряда (в зависимости от предписания изготовителя) -не менее 100% емкости, указанной в таблице для 10-, 5-, 3-, 1- и 0,5-часового режимов разряда.

    При выборе аккумуляторов следует обращать внимание на то, при каких условиях задается изготовителем значение номинальной емкости. Если значение емкости задается при более высокой температуре, то для сравнения данного типа аккумулятора с другими необходимо предварительно пересчитать емкость на температуру 20 °С. Если значение емкости задается при более низком конечном напряжении разряда, необходимо пересчитать емкость по данным разряда аккумуляторов постоянным током, приводимую в эксплуатационной документации или рекламных данных производителя для данного режима разряда, до конечного напряжения, указанного в таблице.

    Кроме того, при оценке аккумулятора следует учитывать исходное значение плотности электролита, при которой задается емкость: если исходная плотность повышена, то весьма вероятно, что срок службы аккумулятора сократится.

    Пригодность к буферной работе

    Другим параметром, характеризующим стационарные свинцово-кислотные аккумуляторы, является их пригодность к буферной работе. Это означает, что предварительно заряженная батарея, подключенная параллельно с нагрузкой к выпрямительным устройствам, должна сохранять свою емкость при указанном изготовителем напряжении подзаряда и заданной его нестабильности. Обычно напряжение подзаряда Uпз указывается для каждого типа аккумулятора и находится в пределах 2,18-2,27 В/эл. (при 20 °С). При эксплуатации с другими климатическими условиями следует учитывать температурный коэффициент изменения напряжения подзаряда.

    Нестабильность подзарядного напряжения для основных типов аккумуляторов не должна превышать 1%, что накладывает определенные требования на выбор выпрямительных устройств при проектировании электропитающих установок связи.

    При буферной работе для достижения приемлемого срока службы свинцово-кислотных аккумуляторов необходимо не превышать допустимый ток их заряда, который задается различными производителями в пределах 0,1-0,3 С10. При этом следует помнить, что ток заряда аккумуляторов с напряжением, превосходящим 2,4 В/эл., не должен превышать величину 0,05 С10.

    Разброс напряжения элементов

    Важным параметром, определяемым технологией изготовления аккумуляторов, является разброс напряжения отдельных элементов в составе батареи при заряде, подзаряде и разряде. Для открытых типов аккумуляторов этот параметр задается изготовителем, как правило, в пределах ± 2% от среднего значения. При коротких режимах разряда (1-часовом и менее) разброс напряжений не должен превышать +5%. Обычно для аккумуляторов с содержанием более 2% сурьмы в основе положительных электродов разброс напряжений отдельных элементов в батарее значительно ниже вышеуказанного и не приводит к осложнениям в процессе эксплуатации аккумуляторных установок.

    Для аккумуляторов с меньшим содержанием сурьмы в основе положительных электродов или с безсурьмянистыми сплавами указанный разброс напряжения элементов значительно больше и в первый год после ввода в действие может составлять +10% от среднего значения с последующим снижением в процессе эксплуатации.

    Отсутствие тенденции к снижению величины разброса напряжения в течение первого года после ввода в действие или увеличение разброса напряжения при последующей эксплуатации свидетельствует о дефектах устройства или о нарушении условий эксплуатации.

    Особенно опасно длительное превышение напряжения на отдельных элементах в составе батареи, превышающее 2,4 В/эл., поскольку это может привести к повышенному расходу воды в отдельных элементах при заряде или подзаряде батареи и к сокращению срока ее службы или повышению трудоемкости обслуживания (для аккумуляторов открытых типов это означает более частые доливки воды). Кроме того, значительный разброс напряжения элементов в батарее может привести к потере ее емкости вследствие чрезмерно глубокого разряда отдельных элементов при разряде батареи.

    Саморазряд

    Качество технологии изготовления аккумуляторов оценивается также и по такой характеристике, как саморазряд.

    Саморазряд (по определению ГОСТ Р МЭК 896-1-95 - сохранность заряда) определяется как процентная доля потери емкости бездействующим аккумулятором (при разомкнутой внешней цепи) при хранении в течение заданного промежутка времени при температуре 20 °С. Этот параметр определяет продолжительность хранения батареи в промежутках между очередными зарядами, а также величину подзарядного тока заряженной батареи.

    Величина саморазряда в значительной степени зависит от температуры электролита, поэтому для уменьшения подзарядного тока батареи в буферном режиме ее работы или для увеличения времени хранения батареи в бездействии целесообразно выбирать помещения с пониженной средней температурой.

    Обычно среднесуточный саморазряд открытых типов аккумуляторов при 90-суточном хранении при температуре 20 ° С не должен превышать 1% номинальной емкости, с ростом температуры на 10 °С это значение удваивается. Среднесуточный саморазряд герметизированных аккумуляторов при тех же условиях хранения, как правило, не должен превышать 0,1% номинальной емкости.

    Внутреннее сопротивление и ток короткого замыкания

    Для расчета цепей автоматики и защиты аккумуляторных батарей ГОСТ Р МЭК 896-1-95 регламентирует такие характеристики аккумуляторов как их внутреннее сопротивление и ток короткого замыкания. Эти параметры определяются расчетным путем по установившимся значениям напряжения при разряде батарей токами достаточно большой величины (обычно равными 4 С10 и 20 С10) и должны приводиться в технической документации производителя. По этим данным может быть рассчитан такой выходной динамический параметр электропитающей установки (ЭПУ), как нестабильность ее выходного напряжения при скачкообразных изменениях тока нагрузки, поскольку в буферных ЭПУ выходное сопротивление установки в основном определяется внутренним сопротивлением батареи.

    Примечание:

    "Бумажная" версия статьи содержит сводную таблицу характеристик аккумуляторов (стр. 126-128). Так как формат таблицы очень неудобен для размещения на сайте, здесь эта таблица не приводится.

    Об авторах: О.П. Чекстер, начальник лаборатории ФГУП ЛОНИИС; И.М. Джосан, ведущий инженер ФГУП ЛОНИИС

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > свинцово-кислотная аккумуляторная батарея

  • 10 режим

    Русско-английский научно-технический словарь переводчика > режим

  • 11 взлетный

    безопасная взлетная дистанция
    safe takeoff distance
    взлетная дистанция
    takeoff distance
    взлетная масса
    1. takeoff weight
    2. takeoff mass взлетная мощность
    1. takeoff output
    2. takeoff power взлетная полоса
    takeoff strip
    взлетная характеристика
    1. takeoff ability
    2. takeoff performance взлетное положение закрылков
    flap takeoff position
    взлетный курс
    takeoff heading
    взлетный угол
    takeoff angle
    выходить на взлетный режим
    come to takeoff power
    диапазон взлетных режимов
    takeoff range
    максимальная сертифицированная взлетная масса
    maximum certificate takeoff mass
    максимально допустимая взлетная масса
    maximum takeoff weight
    общая взлетная масса
    takeoff gross weight
    огни взлетной полосы гидроаэродрома
    channel lights
    полная взлетная дистанция
    gross takeoff distance
    полная взлетная масса
    allowable takeoff weight
    поправка на взлетную массу
    takeoff mass correction
    продолжительность работы двигателя на взлетном режиме
    full-thrust duration
    располагаемая взлетная дистанция
    takeoff distance available
    расчетная взлетная масса
    1. design takeoff mass
    2. design takeoff weight сертификация по шуму на взлетном режиме
    take-off noise
    сертифицированная взлетная масса
    certificated takeoff weight
    скорость при взлетной
    speed in takeoff configuration
    (конфигурации воздушного судна) тяга на взлетном режиме
    takeoff thrust
    устанавливать взлетный режим
    set takeoff power
    установка закрылков на взлетный угол
    flaps takeoff setting
    уточненная взлетная дистанция
    corrected takeoff distance
    число оборотов двигателя на взлетном режиме
    engine takeoff speed

    Русско-английский авиационный словарь > взлетный

См. также в других словарях:

  • ГОСТ 23220-78: Средства контроля работы двигателей летательных аппаратов. Термины и определения — Терминология ГОСТ 23220 78: Средства контроля работы двигателей летательных аппаратов. Термины и определения оригинал документа: 2. Авиационная маслоизмерительная система Маслоизмерительная система Совокупность средств измерений, соединенных… …   Словарь-справочник терминов нормативно-технической документации

  • Автоматическая трансмиссия — Разрез гидротрансформаторной восьмиступенчатой АКП автомобиля Lexus …   Википедия

  • Автоматическая коробка переключения передач — Разрез гидротрансформаторной восьмиступенчатой АКП автомобиля Lexus. Разрез шестиступ …   Википедия

  • ГОСТ Р МЭК 60204-1-2007: Безопасность машин. Электрооборудование машин и механизмов. Часть 1. Общие требования — Терминология ГОСТ Р МЭК 60204 1 2007: Безопасность машин. Электрооборудование машин и механизмов. Часть 1. Общие требования оригинал документа: TN систем питания Испытания по методу 1 в соответствии с 18.2.2 могут быть проведены для каждой цепи… …   Словарь-справочник терминов нормативно-технической документации

  • АКПП — Разрез современной восьмиступенчатой АКПП фирмы (также автоматическая трансмиссия, АКПП)  разновидность коробки передач автомобилей. От механической (МКПП) отличается автоматизированным переключением передач, а также, в большинстве случаев, иной… …   Википедия

  • методика — 3.8 методика: Последовательность операций (действий), выполняемых с использованием инструмента и оборудования для осуществления метода. Примечание Совокупность последовательности реализации операций и правил конкретной деятельности с указанием… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 26599-85: Системы передачи волоконно-оптические. Термины и определения — Терминология ГОСТ 26599 85: Системы передачи волоконно оптические. Термины и определения оригинал документа: 84. Акустооптический коммутационный прибор Оптический коммутационный прибор, в котором оптическая коммутация осуществляется за счет… …   Словарь-справочник терминов нормативно-технической документации

  • High Dynamic Range Imaging — У этого термина существуют и другие значения, см. HDR. High Dynamic Range Imaging, HDRI или просто HDR  общее название технологий работы с изображениями и видео, диапазон яркости которых превышает возможности стандартных технологий. Чаще… …   Википедия

  • 1: — Терминология 1: : dw Номер дня недели. «1» соответствует понедельнику Определения термина из разных документов: dw DUT Разность между московским и всемирным координированным временем, выраженная целым количеством часов Определения термина из… …   Словарь-справочник терминов нормативно-технической документации

  • Автоколебания напорной системы гидроэлектростанции — физическое явление, приводящее к внезапному возникновению и резкому неконтролируемому росту пульсаций давления и расхода в потоке воды, проходящем через турбину этой станции. Явление аналогичного типа на нагнетающих турбомашинах – насосах и… …   Википедия

  • ГОСТ 19619-74: Оборудование радиотелеметрическое. Термины и определения — Терминология ГОСТ 19619 74: Оборудование радиотелеметрическое. Термины и определения оригинал документа: 34. Адаптация телеметрической системы к объекту Адаптация к объекту Е. Telemetry system adaptation to object Процесс автоматического… …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»